
!

CliMAF Earth System Model
Evaluation Platform

Evaluating/comparing a set of
simulations/models on Ciclad:

Demo / TP

1

1.  Running the C-ESM-EP demo for all components

2.  Atlas Explorer as an exploratory tool:

1.  Modify the input datasets:
1.  Add/modify datasets (CMIP5 models or IGCM_OUT simulations)
2.  Change the period and frequency
3.  Setup your own CliMAF project
4.  Control the reference

2.  Using the Atlas Explorer parameter file
1.  Overall parameters
2.  Play with the dictionaries of the variables
3.  Add new variables
4.  Modify the plot parameters

Outline
 C-ESM-EP Demo / Practicals

2

1. Running The C-ESM-EP

3

4

1.  The data you want to work on is described by a CliMAF
'project' (data tree + variable names aliases)

2.  The data has to be CF-compliant (norm on the metadata in
the files, especially the dimensions)

3.  We encourage working with CMIP variable names

4.  No overlapping files in your data directories (do not have
multiple files covering a common period for the same
variable in the same data tree)

The C-ESM-EP in a nutshell
 Prerequesite on your data

5

Note: running the C-ESM-EP implies storing the results on a space that can be
reached from the web.

Ciclad:
/prodigfs/ipslfs/dods/${username}

Curie:
/ccc/work/cont003/thredds/${username} #(if working on gencmip6)
/ccc/work/cont003/dods/public/${username} #(if working on dsm)

If you don't have an account on those spaces, send a request to:
•  Ciclad: svp-ciclad@ipsl.jussieu.fr
•  TGCC: hotline.tgcc@cea.fr

Getting started
 Web server

6

•  Ciclad:

 sources=/home/jservon/C-ESM-EP/src

•  Curie:

 sources=/ccc/cont003/home/dsm/p86jser/C-ESM-EP/src

For both Ciclad and Curie, we advise to work on /home to take
advantage of the backup.

Getting started
 Getting the C-ESM-EP sources folder

7

1.  Copy the sources in a working directory:
cd my_working_directory
mkdir -p C-ESM-EP ; cd C-ESM-EP
cp –r ${sources} . ; cp –r src work
cd work

2.  Setup your comparison:
cp -r comparison_example/ all_components_demo/

3.  Run all the components together or just a subset:

python run_C-ESM-EP.py all_components_demo

5.  See the results on the URL returned by run_C-ESM-EP.py

6.  If you only want the URL, run:
python run_C-ESM-EP.py all_components_demo url

The C-ESM-EP in a nutshell
 The quick way to use the C-ESM-EP on Ciclad

8

On Ciclad, we can write directly on the dods server. Thus, the output directory
is automatically set to:
CESMEP_OUT=/prodigfs/ipslfs/dods/${USER}

The result of the C-ESM-EP is meant to be portable, i.e. you can copy the top
directory of your comparison on any space that you can access with a web
browser and you will be able to read it.

The output tree is:
${CESMEP_OUT}/C-ESM-EP/${comparison}_user/

 C-ESM-EP_${comparison}.html
 ${component}_${season}/

 atlas_${component}_${comparison}_${season}.html
 climaf_atlas*.png

In every ${component}_${season} directories you will find the html file of the
atlas of the component, and the png images coming with it.

Getting started
 Output directory for the results / portable atlas

9

2. Playing with Atlas Explorer

10

Atlas Explorer is an easy and flexible way to produce an html page
showing climatologies and difference maps (with a reference) on a set of
datasets (simulations, models, different periods…).

The main goal of the Atlas Explorer is to provide the user with a set of
predefined features to assess a variable (plotting parameters, default
observational reference) while keeping a lot of control on the diagnostics
from only one parameter file.

In this demo/practical, we will see how to control:
-  the input datasets (CMIP5 models, your simulations…)
-  The diagnostics (variables, region, season, customising the plots…)

Atlas Explorer
 Goal - philosophy

11

 Submit an interactive session with:

qsub –IV –q std
cd my_working_directory/C-ESM-EP/work

 Setup a comparison directory to play with Atlas Explorer:

cp -r comparison_example/ toy_comparison/
cd toy_comparison

You're all set to start!

Getting started with Atlas Explorer
 Setup for an interactive session

12

2.1 Add/modify datasets

13

Simulations – datasets

2.1 Add/Modify the datasets
 datasets_setup.py

14

The datasets are specified in datasets_setup.py

The datasets are defined as python dictionaries containing the keywords/values
pairs that are typically used by the CliMAF function ds() to access the data (but the
variable).

The dictionaries can contain some custom control on the diagnostics (provide a
season, a period and frequency specific to a diagnostic…).

Let's start by opening datasets_setup.py with your favourite editor:

vi datasets_setup.py

We will now learn how to add or modify the datasets in datasets_setup.py, using
the pre-existing CliMAF projects (data access definitions).

2.1 Add/Modify the datasets
 datasets_setup.py

15

CliMAF provides a standardized way to access different data structures,
defined with CliMAF projects, with a set of common/mandatory keys and
possible specific keys to describe the data structure.

We access the datasets with the function ds() (shortcut to cdataset()) by
providing pairs of keywords/values. Example (in CliMAF code):

dat = ds(project = 'CMIP5',

model = 'IPSL-CM5A-LR', experiment = 'historical',
simulation = 'r1i1p1', variable = 'tas',
frequency = 'monthly', period = '1980-2005'

)

Mandatory / specific

This functionality allows defining variable name aliases (potential scale/
offset), so that you can work on all the different data structures with CMIP
variables names and SI units.

16

2.1.1 CliMAF datasets
 Standardized interface to access datasets

In CliMAF, we get access to the datasets through CliMAF 'projects'.

A CliMAF project is defined by:
-  a pattern to access the data
-  a set of keywords that define the dataset (path + filename + variable)
-  a set of aliases (variables and frequency) between the names in the files and the

CMIP standard names

Have a look at the documentation here:
http://climaf.readthedocs.io/en/latest/functions_data.html?highlight=cproject

And/or look at the examples (projects already defined in CliMAF) in the CliMAF
version used for the C-ESM-EP:

/home/jservon/Evaluation/CliMAF/climaf_installs/climaf_1.0.3_CESMEP/
climaf/projects

The igcm_out.py project file is a good example.

17

2.1.1 The CliMAF projects
 Getting access to the various data structures

2.1.1 The 'CMIP5' CliMAF project
 Example with the 'CMIP5' data structure

If you set this in datasets_setup.py:

models = [
 dict(

project = 'CMIP5',
model = 'IPSL-CM5A-LR',
experiment = 'historical',
simulation = 'r1i1p1',
frequency = 'monthly',
period = '1980-2005'

)
]

You will make use of this pattern:

/prodigfs/project/CMIP5/output/*/${model}/${experiment}/${frequency}/
${realm}/${table}/${simulation}/${version}/${variable}/
${variable}_${table}_${model}_${experiment}_${simulation}_${period}.nc

To access this file
/prodigfs/project/CMIP5/output/IPSL/IPSL-CM5A-LR/historical/mon/
atmos/Amon/r1i1p1/latest/tas/
tas_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc

18

The available keys and default values are:

model = no default
experiment = 'historical'
realm = '*'
table = '*'
simulation = 'r1i1p1'
version = 'last'
frequency = 'monthly'
period = no default

You need to define model and period.

Frequency='seasonal' is not available on project CMIP5.

2.1.1 The 'CMIP5' CliMAF project
 Example with the 'CMIP5' data structure

19

The 'IGCM_OUT' CliMAF project provides access to the data structure of
the libIGCM model outputs, like LMDz, ORCHIDEE, NEMO, PISCES (and
subsequently, LMDZ-OR, and IPSLCM models)

 Here is a typical example of an IGCM_OUT dataset definition:

models = [
 dict(project = 'IGCM_OUT',
 root = '/ccc/store/cont003/thredds',
 login = 'p86caub',
 model = 'IPSLCM6',
 simulation = 'CM605-LR-pdCtrl01',
 frequency = 'seasonal',
 clim_period = '2020_2029'
)
]

2.1.1 The 'IGCM_OUT' project
 Example with the 'IGCM_OUT' data structure

20

CliMAF is searching your file among those patterns:

${root}/${login}[/IGCM_OUT]/${model}/${status}/${experiment}/
${simulation}/${DIR}/${OUT}/${ave_length}/
${simulation}_YYYYMMDD_YYYYMMDD_${frequency}_${variable}.nc

${root}/${login}[/IGCM_OUT]/${model}/${status}/${experiment}/$
{simulation}/${DIR}/${OUT}/${frequency}${clim_period_length}/
${simulation}_${frequency}_${clim_period}_1M_${variable}.nc

2.1.1 The 'IGCM_OUT' project
 Example with the 'IGCM_OUT' data structure

21

1.2.2/ project IGCM_OUT
 Available keys

The available keys and default values are:

 - root = '/ccc/store/cont003/thredds' # path (without the login)

 # to the top of the IGCM_OUT tree
 - login = '*' # login of the producer of the simulation
 - model = '*' # explicit
 - experiment = '*' # piControl, historical, amip...
 - status = '*' # DEVT, PROD, TEST
 - simulation = '*' # name of the numerical simulation

 # (JobName in the IGCM syntax)
 - DIR = '*' # ATM, OCE, SRF...
 - OUT = 'Analyse' # or 'Output'
 - frequency = 'monthly' # daily, annual_cycle (equivalent to 'seasonal')
 - ave_length = 'MO' # MO, DA (optionnal, but can reduce the

 # duration of the localization by ds())
 - period = 'fx' # explicit
 - clim_period = '????_????' # explicit
 - clim_period_length = '' # can be set to '_50Y' or '_100Y' to access

 # the annual cycles averaged over 50yr long
 # or 100yr long periods

22

Customname: you can provide a customname in the dataset dictionary that will be
used in the plots

2.1.1 Name in the plot
Bonus: provide a customname to be used in the plots

23

Using the example, add another CMIP5 model and another IGCM_OUT
simulation.

Then, run Atlas Explorer:

./job_C-ESM-EP.sh AtlasExplorer

See the results on the address at the end of the execution.

2.1.1 Exercise
 Add / modify the datasets

24

The C-ESM-EP has a 'safe_mode' that returns an empty (white) image when it
doesn't successfully produce the plot (by default).

You can track down the origin of the error by setting 'safe_mode'=False in the
associated parameter file in:

vi toy_comparison/AtlasExplorer/params_AtlasExplorer.py

Also ensure that you set verbose='debug' so that CliMAF will write what it's
doing (and the details of the error).

2.1.1 Debugging
 Tracking down the errors

25

Example (from a params_AtlasExplorer.py file:

2.1.1 Debugging
 Tracking down the errors

26

The C-ESM-EP essentially works on 'monthly' and 'seasonal' datasets.

With the 'monthly' datasets, CliMAF can perform a smart period
selection on the available netcdf files.

With the 'seasonal' datasets, CliMAF only selects an existing seasonal
cycle netcdf file. The C-ESM-EP, however, has a smart way to select the
last/first seasonal cycle available.

Both CMIP5 and IGCM_OUT projects have monthly datasets.
Only IGCM_OUT (and the ref_climatos project) provides seasonal
datasets.

2.1.2 Control the period
 Period selection in brief in CMIP5 and IGCM_OUT

27

One of the great features of CliMAF is the automatic selection of the
period provided by the user.

When you set frequency='monthly', you have to provide a period that
will be extracted among the non-overlapping netcdf files in the targeted
directory.

For instance, this dataset definition:

dict(project = 'CMIP5', model = 'IPSL-CM5A-LR',
 experiment = 'historical', simulation = 'r1i1p1',
 frequency = 'monthly', period = '1980-2005')

Will extract the period 1980-2005 from this file found in the archive:

/prodigfs/project/CMIP5/output/IPSL/IPSL-CM5A-LR/historical/
mon/atmos/Amon/r1i1p1/latest/tas/
tas_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc

2.1.2 Control the period
 Period selection in the CMIP5 project

28

In the IGCM_OUT project, you will have the same behaviour as for the CMIP5
project with frequency='monthly' (fundamental CliMAF functionality).

By default, it will target the 'TS_MO' time series files created by the post-
processing (one variable per file with all time steps).

If you want to get the data from the 'Output/MO' files, add OUT='Output' to the
list of arguments :

dict(project = 'IGCM_OUT', root = '/ccc/store/cont003/thredds',

 login = 'p86caub', model = 'IPSLCM6',
 simulation = 'CM605-LR-pdCtrl01'
 frequency = 'monthly', OUT='Output', period = '2020_2029')

2.1.2 Control the period and frequency
 Period selection in IGCM_OUT

29

The IGCM_OUT project allows access to the pre-computed '/Analyse/SE' annual
cycles provided as a post-treatment.

We access the SE with frequency='seasonal'.

Because we don't do period selection on annual cycles, the 'period' argument is
automatically set to 'fx' (for 'fixed field').

Instead, we use 'clim_period' that can be:
-  an explicit character string providing the pre-existing period
-  'last_SE' or 'first_SE' to get the last/first available annual cycle of the simulation

dict(project = 'IGCM_OUT', root = '/ccc/store/cont003/thredds',
 login = 'p86caub', model = 'IPSLCM6',
 simulation = 'CM605-LR-pdCtrl01'
 frequency = 'seasonal', clim_period = '2020_2029'),

dict(project = 'IGCM_OUT', root = '/ccc/store/cont003/thredds',
 login = 'p86caub', model = 'IPSLCM6',
 simulation = 'CM605-LR-pdCtrl01'
 frequency = 'seasonal', clim_period = 'last_SE')

2.1.2 Control the period and frequency
 Working with pre-computed annual cycles IGCM_OUT 'SE'

30

The C-ESM-EP is composed of 'climatology diagnostics' (like bias maps) and
'time series diagnostics' (like the AMOC index or ENSO diagnostics).

Because of this, the user might want to provide one period for the
climatologies, and one for the time series.

The diagnostics of the Atlas Explorer are only 'climatology diagnostics'. We
will describe how to handle the 'time series diagnostics' also here, but it will
not be applicable to the Atlas Explorer.

2.1.2 clim_period and ts_period
 Period for the clim. and the time series C-ESM-EP diagnostics

31

Trivial case
If the user sets frequency='monthly' and provides a 'period', the C-ESM-EP
will use this period for both the time series diagnostics and the climatologies.

Separate control of the clim and ts period
The C-ESM-EP has a specific functionality that adds to the CliMAF data access
and allows controlling the period for the different diagnostics:

-  clim_period for the climatological diagnostics
-  ts_period for the time series diagnostics

2.1.2 clim_period and ts_period
 Period for the clim. and the time series C-ESM-EP diagnostics

32

If the user provides a ts_period the C-ESM-EP will automatically set
frequency='monthly' for the diagnostics labeled 'TS'.

ts_period takes the following values:
-  an explicit period (ex: '1980-2005', '198001_200012', '20000101-20051231')
-  last_XXY / first_XXY to extract the last/first XX years available
-  'full' to get the whole available period

2.1.2 ts_period
 Period for the time series diagnostics

33

If the user provides a clim_period, we have two cases:

Case 1: frequency='seasonal'
In this case (only for IGCM_OUT), CliMAF will get the 'SE' files.
Possible values (as said previously):
-  an explicit character string providing the pre-existing period
-  'last_SE' or 'first_SE' to get the last/first available annual cycle of the simulation

Case 2: frequency='monthly'
If the user provides a 'clim_period' with frequency='monthly', the C-ESM-EP will use
the value of clim_period as a 'period'. CliMAF will then handle the period extraction
and the C-ESM-EP will compute the climatology over this period.
Possible values:
-  an explicit period (ex: '1980-2005', '198001_200012', '20000101-20051231')
-  last_XXY / first_XXY to extract the last/first XX years available
-  'full' to get the whole available period

2.1.2 clim_period
 Period for the climatology (notably for Atlas Explorer)

34

Using the example, add other periods of the same CMIP5 model and
IGCM_OUT simulation to the list of datasets.

Then, run Atlas Explorer:

./job_C-ESM-EP.sh AtlasExplorer

See the results on the address at the end of the execution.

2.1.2 Exercise
 Change the period in Atlas Explorer

35

2.1.3 Add your own project
 Access your own datasets

You can easily access your own datasets by creating a CliMAF project
directly in datasets_setup.py.

You will find an example in datasets_setup.py with a 'CMIP5_bis' project
(same as next slide).

The minimum you have to do is a 'cproject' and a 'dataloc'.
You will also see how to use cdef() (define default values) and cfreqs()
(aliases for the frequency names).

You're also invited to look at the CliMAF documentation for the use of
those functions, and get some inspiration from the CliMAF projects in:

/home/jservon/Evaluation/CliMAF/climaf_installs/
climaf_1.0.3_CESMEP/climaf/projects

36

2.1.3 Add your own project
 Add access to your own data structure

37

The goal of Atlas Explorer is to do difference maps between a set of datasets
(specified in the 'models' list) and a reference, controlled with 'reference' in
datasets_setup.py (also in the parameter files for custom control).

The 'default' reference provides access to a set of pre-defined references
(observations, reanalyses) for each variable. This is done via the CliMAF
function variable2reference() (not seen by the user) that returns a dataset
dictionary defining the reference dataset for the chosen variable.

-- Set the reference against which we plot the diagnostics
-- >
-- -> 'default' uses variable2reference to point to a default
-- reference dataset (obs and reanalyses)
-- -> you can set reference to a dictionary that will point any other
-- climaf dataset
-- For instance, you can set it to models[0] if you want to see the
-- differences relative to the first simulation of the list 'models'
reference = 'default'

2.1.4 Choose the reference
 Reference used for the difference maps

38

It is possible to add your own references (if described by a CliMAF project) with
custom_obs_dict (either from datasets_setup.py or the parameter file).
It is particularly useful if you defined new variables, or want to change the
reference that is provided by default.

Example: specifying the ERAINT reference of the project ref_climatos for a list
of variables:

2.1.4 Add your reference
 Adding user reference to the default references

39

Atlas Explorer also allows to do differences between a reference simulation and
the 'models' datasets.

For this, you simply provide a simulation dataset dictionary to reference:

2.1.4 Difference with a simulation
 Use a simulation dataset as the reference

40

Note 1
CliMAF offers a set of pre-defined plot parameters, depending on the
'context': full_field (for a climatology), 'bias', and 'model_model' for model-
model differences. The C-ESM-EP automatically defines the context by
analysing the input datasets.
In that case, CliMAF will use the pre-defined plot parameters for the
'model_model' differences (and not the 'bias' differences).

(more details in section 2.2.4)

Note 2
Much of our climate science consists in doing climatologies and differences…
This functionality provides a huge amount of possibilities:
-  Differences of targeted periods of a simulation relative to the climatology of

this simulation
-  Evolution of a simulation relative to the first month/year
-  Differences of a set of simulations with a reference model version
-  …

2.1.4 Difference with a simulation
 Use a simulation dataset as the reference

41

2.2 AtlasExplorer parameter file

42

The content of the Atlas Explorer (and the C-ESM-EP components) is
widely controlled from the parameter file:

AtlasExplorer/params_AtlasExplorer.py

In this section we will learn how to use it.

2.2 Atlas Explorer parameter file
 Using the parameter file to control the diagnostics

43

The following parameters control the execution:

-- Set the verbosity of CliMAF (minimum is 'critical',
maximum is 'debug', intermediate -> 'warning')
verbose='debug'

-- Safe Mode (set to False and verbose='debug' if you want
to debug)
safe_mode = False

-- Set to 'True' (string) to clean the CliMAF cache
clean_cache = 'False'

2.2.1 Overall parameters
 General control of the Atlas Explorer

44

Those parameters are general values for the diagnostics of the atlas:

-- Set the reference against which we plot the diagnostics
-- >
-- -> 'default' uses variable2reference to point to a default
-- reference dataset (obs and reanalyses)
-- -> you can set reference to a dictionary that will point any other
-- climaf dataset
-- For instance, you can set it to models[0] if you want to see the
-- differences relative to the first simulation of the list 'models'
reference = 'default'

-- Set the overall season, region and geographical domain
--> season, region and domain do not overwrite the values that are pre-defined with
some diagnostics
-- >
season = 'ANM' # -> Choose among all the possible values taken by clim_average (see
help(clim_average)) like JFM, December,...
proj = 'GLOB' # -> Set to a value taken by the argument 'proj' of plot(): GLOB, NH,
SH, NH20, SH30...
#domain = dict(lonmin=0, lonmax=360, latmin=-30, latmax=30) # -> set domain =
dict(lonmin=X1, lonmax=X2, latmin=Y1, latmax=Y2)
domain = {}

2.2.1 Overall parameters
 General control of the Atlas Explorer

45

One of the goals of Atlas Explorer is to provide the user with an easy control of
the scientific content of the atlas.

Each line of the html page is an element of the atlas_explorer_variables list in
the params_AtlasExplorer.py file.

2.2.2 atlas_explorer_variables
 Provide a variable with additionnal features

46

Va
ria

bl
es

 (s
ea

so
ns

, p
ro

je
ct

io
ns

, d
om

ai
ns

…
)

2.2.2 atlas_explorer_variables
 Provide a variable with additionnal features

47

From the atlas_explorer_variables python list, the user can provide:

-  a variable name as a character string

 => uses the overall plot parameters + the pre-defined plot parameters for
 each variable

-  A dictionary containing specific instructions for this line of plot

2.2.2 atlas_explorer_variables
 Provide a variable with additionnal features

48

Here is the list of arguments that you can control from the dictionary of a
variable:

All arguments that the 'plot' CliMAF function can take:

-  http://climaf.readthedocs.io/en/latest/scripts/plot.html

-  proj: the projection used (GLOB, NH20, SH60…)

-  contours: add contours

-  colors, min, max, delta: control the color isolines

-  color: an NCL color palette

-  …

See next slide

2.2.2 atlas_explorer_variables
 Provide a variable with additionnal features

49

And arguments that are specific to the C-ESM-EP:

-  season: explicit (see clim_average in CliMAF doc)

-  domain: a geographical domain (example in params_AtlasExplorer.py)

-  spatial_anomalies: True or False (remove the mean of the field)

-  cdogrid: provide a specific CDO grid to regrid both model and
reference

-  regrid_option: a specific CDO regridding method

-  zonmean_variable: specify that the variable will be shown as zonal
means (for new variables created from the param file)

-  add_climato_contours: True/False

2.2.2 atlas_explorer_variables
 Provide a variable with additionnal features

50

Now I would like to work with a new variable (that is not already used in
the various parameter files of all the different components).

Case 1
If path/filename targeted by the CliMAF project you are using contains
explicitly the variable name (as for CMIP5), you can access it rightaway.
Ex with 'tas':

tas_Amon_IPSL-CM5A-LR_historical_r1i1p1_185001-200512.nc

Case 2
If not, like in the IGCM_OUT project for the 'SE' files, the file contains
multiple variables and the file name contains a specific character string.
Example with 'tas' found in the 'histmth' file:

CM605-LR-pdCtrl01_SE_2000_2009_1M_histmth.nc

Go to next slide

2.2.3 The variables
 How can I add my own new variable?

51

You then need to tell CliMAF that it will find the variable 'tas' in the file containing
'histmth' (filenameVar='histmth') by creating an alias with the CliMAF function calias():

calias('IGCM_OUT','tas','t2m', filenameVar='histmth')

We encourage the users to use CMIP variable names to facilitate the sharing of atlases
(and crossing the different CliMAF projects in the same atlas).
That's why at the same time, we create an alias to tell CliMAF that the variable
'tas' (second argument) is actually the variable 't2m' (third argument) in the
IGCM_OUT project (first argument).

You can also add a scaling and offset to this alias (CliMAF works with SI units):

calias("IGCM_OUT", 'tos', offset=273.15, filenameVar='grid_T')
calias("IGCM_OUT", 'sic', 'siconc', scale=100, filenameVar="icemod")

2.2.3 The variables
 Add my variable + create an alias to the CMIP name

52

A 'derived variable' is a new variable obtained as the combination of
existing variables (adding/substracting two variables, extract a PFT…).

The user can create his/her own derived variables from the parameter file.

Example:

derive('*','rstt','minus','rsdt','rsut')

… means that for all projects (first argument '*', the variable 'rstt' (second
argument) is the substraction (application of the operator 'minus', third
argument) between 'rsdt' and 'rsut'.
It is possible to add a scale and offset at that step.

Go to next slide…

2.2.3 Creating a derived variable
 Create a variable as the combination of variables

53

For more details on derive(), please look at:
http://climaf.readthedocs.io/en/latest/functions_data.html?
highlight=derive

The user can also create a new CliMAF operator if needed (if the operator
is not already available, see the documentation), and/or use the truly
powerful ccdo() operator to use any CDO operator.

For an explicit example, check the ORCHIDEE parameter file.

2.2.3 Creating a derived variable
 Create a variable as the combination of variables

54

As we've seen, with Atlas Explorer the user can control the plot
parameters directly from the variable dictionary in
atlas_explorer_variables.

If you want to modify the plot parameters for all your atlases (for
each variable), across all components, you can do it in the
custom_plot_params.py file in the main directory
(C-ESM-EP/work).

In this file you have the possibility to provide any argument of
the CliMAF plot() function as a plot parameter for any targeted
variable and context.

2.2.4 Plot parameters
 Controlling the plot parameters per variable

55

Note: if the isolines in 'full_field' are provided with 'colors' (defined
by hand… yes it's boring), the climatology of the reference can be
over-imposed to the bias maps as contours.

2.2.4 Plot parameters
 Controlling the plot parameters per variable

Example:

56

2.2.4 Plot parameters
 Controlling the plot parameters per variable

There are three 'contexts':
-  'full_field' (for a climatology)
-  'bias' for a model-obs difference
-  'model_model' for model-model differences

The C-ESM-EP automatically determines the context by analysing the
input datasets.

If you just want to modify something in the existing plot parameters
(the isolines, the color palette…), copy the plot parameters of the
variable from the CliMAF install in your custom_plot_params.py file:

/home/jservon/Evaluation/CliMAF/climaf_installs/
climaf_1.0.3_CESMEP/climaf/plot

The content of the custom_plot_params.py file provides an example for
the variable 'pr'.

57

The compareCompanion

58

The compareCompanion
 Display a selection of figures on the fly

The various html pages can provide a lot of information and you might
need to select a subset of them to focus on a particular question.

For this, the C-ESM-EP comes with an 'on-the-fly' tool to select a subset of
plots, called the compareCompanion (P. Brockmann).

59

The compareCompanion
 Display a selection of figures on the fly

60

The compareCompanion
 Select your figures with 's'

Select the images by putting the
mouse over the plots and press
's' (for 'select')
A black line is drawn over the
selected plots

61

The compareCompanion
 Select your figures with 's'

Click on the bottom
right icon…

62

The compareCompanion
 Display a selection of figures on the fly

Here is your
selection of plots!

Control the number
of columns with the
slider…

And switch their positions by
dragging the image you want
at the position of your choice

63

The compareCompanion
 Clear the selection

Clear the compareCompanion cache
by pressing 'c' (for 'clear')…
… and restart with a new selection.

64

!

Questions? jerome.servonnat@lsce.ipsl.fr

65

The CliMAF Earth System Model Evaluation Platform, 2017

J. Servonnat, S. Sénési, L. Vignon, O. Marti, P. Brockmann, S. Denvil

Contributors:
F. Hourdin, I. Musat, M.P. Moine, E. Sanchez, M. Chevallier, R. Msadek, J.
Deshayes, M. Van Coppenolle, C. Rousset, J. Mignot, J. Ghattas, P. Peylin, N.
Vuichard, P. Cadule, A. Ducharne, F. Maignan, R. Séférian

Beta-testers:
O. Marti, J. Mignot, J. Deshayes, P. Braconnot, P. Sepulchre, M. Kageyama, S.
Denvil, R. Séférian, A. Cozic

The authors would like to give special credit to A. Voldoire for showing the
way for CliMAF, and to F. Hourdin and the LMDz team for the structure of the

C-ESM-EP that is largely inspired from the LMDz evaluation atlas.

66

