Offres de stages 2021
Les offres suivantes ne sont plus à pourvoir. Elles sont affichées à titre d’archives.
Financement EUR
- Analyse de la variabilité phytoplanktonique en Atlantique nord par méthodes neuronales
Roy Elhourany (IBENS-LOCEAN), Anastase Charantonis , Sylvie Thiria (LOCEAN)
Thème 6 : Marine biogeochemistry, ecosystems and resources
Description du stage (pdf) - Downscalling of geophysical fields by fusion of heterogeneous ocean observations using Deep Learning algorithms
Carlos Mejia (LOCEAN-ESPRI-IA), Sylvie Thiria (LOCEAN)
Thème 6 : Marine biogeochemistry, ecosystems and resources
Description du stage (pdf) - Effect of climate change on nutritive quality of plants and crops
Berzaghi Fabio (LSCE- MOSAIC)
Attente co-encadrement Machine Learning
Thème 5 : Land biogeochemistry, ecosystems and agriculture
Description du stage (pdf) - Développement d’algorithmes d’apprentissage causaux et d’aggrégation d’experts pour prendre en compte l’erreur multimodèles dans les études de détection et d’attribution de records climatiques
Soulivanh Thao, Philippe Naveau (LSCE), Julien Worms (laboratoire mathématiques de l’UVSQ)
Thème 2 : Internal and forced climate variability
Description du stage (pdf) - Développement d’un algorithme de « scoring » par apprentissage profond pour l’évaluation de cartes de précipitations
Barthes Laurent (LATMOS), Mallet Cécile (LATMOS)
Co-encadrement : Pierre Lepetit (doctorant Météo-France)
Thème 4 : Water cycle
Description du stage (pdf) - Recalage d’historique et machine learning pour la recherche de paramètres de modèles d’océan/atmosphère
Redouane Lguensat (LOCEAN-LSCE), V. Balaji (Princeton-IPSL)
Thème 4 : Water cycle
Description du stage (pdf) - Inferring the rain rate from remote sensing space measurement using machine learning algorithm
Nicolas Viltard (LATMOS)+ spécialistes ML de l’équipe SPACE
Co-encadrement : Pierre Lepetit (doctorant Météo-France)
Thème 4 : Water cycle
Description du stage (pdf) - Apport de différentes techniques d’intelligence artificielle pour la classification des organisations spatiales de nuages bas observées par satellites
Brient Florent, Bony Sandrine (LMD) Denby Leif (University of Leeds)
Thème 4 : Water cycle
Description du stage (pdf)
Financement CNES
- Peut-on détecter un cyclone avec un modèle Deep Learning développé pour la conduite autonome ?
Maya George (LATMOS ), Sébastien Gardoll (ESPRI-IA / IPSL)
Financement CNES de Cathy Clerbaux
Thème 4 : Water cycle
Description du stage (pdf)
Financement SCAI
- The power of deep learning applied to oceanic eddy detection
Alexandre Stegner (LMD), Olivier Schwander (LIP6)
Thème 6 : Marine biogeochemistry, ecosystems and resources
Description du stage (pdf) - Réseaux de neurones pour la modélisation de la dynamique spatio-temporelle de courants océaniques de surface
Patrick Gallinari (LIP6), Marina Levy, Sylvie Thiria (LOCEAN)
Co-encadrement Marie Dechelle (doctorante, LIP6-LOCEAN)
Thème 6 : Marine biogeochemistry, ecosystems and resources
Description du stage (pdf) - Projections du climat Antarctique par émulation d’un modèle atmosphérique régional avec des méthodes de Machine Learning
Patrick Gallinari LIP6, Cécile Agosta (LSCE)
Co-encadrement : Antoine Doury, doctorant au CNRM (Toulouse)
Thème 3 : Forced climate future evolution and related processes
Description du stage (pdf)